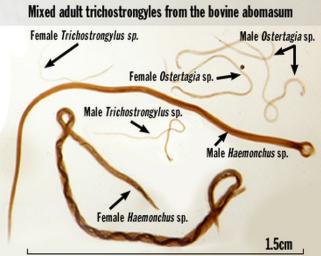
Strategies to Minimize Resistant Internal Parasites on your Farm

J.E. Miller Louisiana State University American Consortium for Small Ruminant Parasite Control


Background To The Problem

- Gastrointestinal worms are major pathogens of small ruminants
- Worm control has relied almost exclusively on the frequent use of anthelmintics (dewormers)
- Dewormer resistance is now common

 A fresh approach to control is needed
- American Consortium for Small Ruminant Parasite Control Group Formed (2001)

Gastrointestinal Worms of Small Ruminants

Abomasum: Haemonchus contortus* (southeast US) Teladorsagia circumcincta Trichostrongylus axei **Small intestine:** Trichostrongylus colubriformis Cooperia Nematodirus Large intestine: Oesophagostomum **Trichuris**

Haemonchus contortus (Barber Pole Worm)

- Blood-sucking worm
 - Highly pathogenic

- Hypoproteinemia "bottle jaw"
- Anemia \rightarrow Death

- Most important worm parasite in small ruminants raised in warm/wet environments
 - Southeastern US year round
 - Seasonal summer rest of US

Life Cycle of *H. contortus*

Adult nematodes in the digestive tract of sheep lay their eggs.

Eggs passed onto pasture in manure.

Infective larvae are ingested by grazing sheep

> Eggs hatch, and larvae develop to infective 3rd stage in soil and manure.

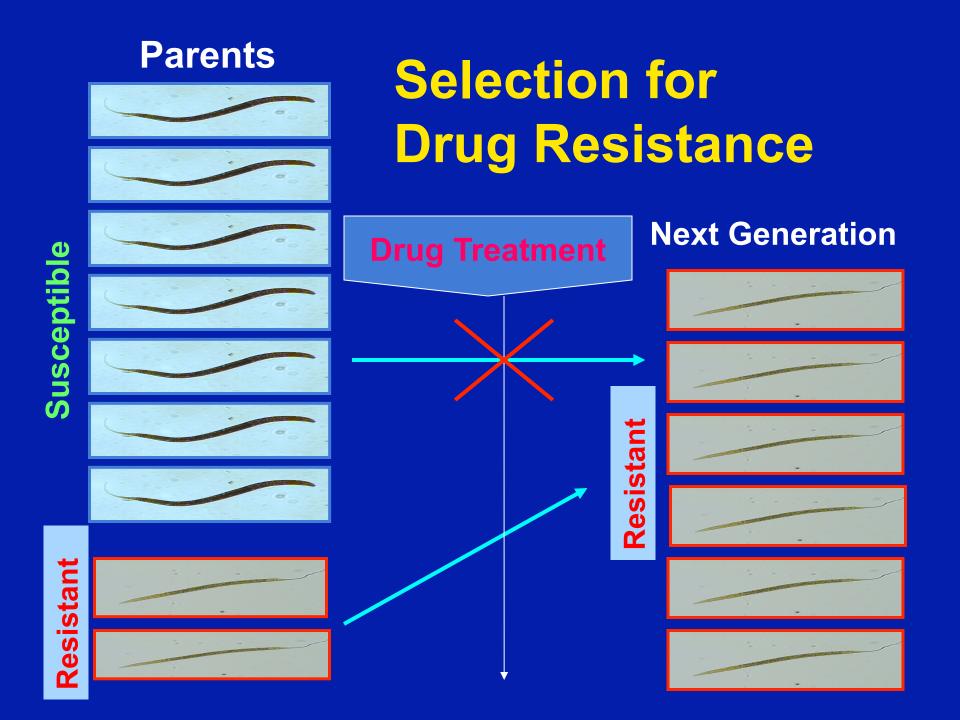
http:// www.ext.vt.edu/pubs/ sheep/410-027/

Why is *H. contortus* such a problem?

- Long transmission season southeastern US
- Very fecund 5-10,000 eggs per day
- Short life cycle
 - 4-5 weeks
 - Immunity wanes ewes parturition/lactation
 - Spring = pasture contamination
- Immunity is slow to develop lambs
 - 4-6 months of age

Teladorsagia/Trichostrongylus (Bankrupt Worms)

- Abomasum/Small intestine
- Thrives in cool/wet climates
- Short transmission season Summer, most of US
- Destroys mucosal cells and disrupts function
- Anorexia, diarrhea, reduced weight gain or weight loss
 - Decreased production not necessarily death = "bankrupt"
- Immunity wanes ewes parturition/lactation
 - Spring = pasture contamination
- Immunity is slow to develop lambs
- 4-6 months of age


Background to the Problem

- Age of modern anthelmintics
- Parasitologists recommended strategic that maximized benefits of treatment
 - Ignored resistance issues
- Over-reliance on anthelmintics
 - Therapeutic vs. prophylactic
 - Loss of common sense managementbased approaches

Anthelmintic Resistance

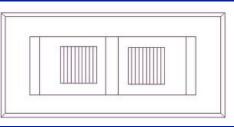
- The ability of worms to survive treatments that are generally effective at the recommended dose rate
- Treatment eliminates worms whose genotype renders them susceptible
 - Worms that are resistant survive and pass on their "resistant" genes
- Resistant worms accumulate and finally treatment failure occurs
 - Natural biological consequence of drug treatment

Where Did We Go Wrong What Actually Causes Resistance

- Treatment at frequent intervals
 - Many farms > 6 Tx per year
- Treating all animals at same time
 - No refugia
 - The proportion of the population that is not selected by drug treatment
 - Provides a pool of susceptible genes
 - Dilutes resistant genes in that population
 - Overlooked as the most important component of drug resistance selection
- Treating and moving to clean pasture
 - No dilution/refugia
- Under dosing
 - Worms with low-level resistance survive

When to Suspect Resistance

- When FEC remain high or clinical signs persist following treatment
 - One must also rule out other possibilities
 - An inadequate dose of drug was administered
 - Underestimated weight
 - Drug was spilled/spit-out
 - Activity of the drug is reduced
 - Beyond its expiration date
 - Stored improperly


Diagnosis of Resistance

- Laboratory DrenchRite
 - Dr. Ray Kaplan's lab (UGA) \$450
 - Only one test needed per farm
 - One pooled fecal sample from 10 animals
 - All 3 major drug classes tested in assay
- Veterinarian in the field -- simple on-farm anthelmintic trial
 - Fecal egg count reduction test
 - FEC at treatment and again 7-10 days later

McMaster Fecal Egg Count

- Quick, easy to perform
- Should be part of routine services offered
- Slides available from:
 - Chalex Corp.
 5004 228th Ave. SE
 Issaquah, WA 98029
 425-391-1169
 FAX 391-6669

What Does All This Mean For The Small Ruminant Industry

- Anthelmintics can no longer be thought of as a management tool to be relied on to improve animal productivity
- Reality = effective long-term control of worms (specifically *Haemonchus*) will only be possible if anthelmintics are used intelligently with prevention of resistance as a goal

Anthelmintics

- Benzimidazoles
 - Albendazole (Valbazen)
 - Fenbendazole (Safegard, Panacur)
 - Oxfendazole (Synanthic)
- Imidazothiazoles
 - Tramisol, Levasol, Rumatel
- Macrocyclic Lactones
 - Ivermectin (Ivomec)
 - Doramectin (Dectomax)
 - Moxidectin (Cydectin)
 - Eprinomectin (Eprinex)
- 2 new classes coming (??)
 - Amino Acetonitrile Derivatives (AAD) Monepantel (Zolvix)
 - Spiroindole Derquantel (Startect)

Prevalence of Resistance

- H. contortus
 - Common
 - Benzimidazoles (Valbazen, Panacur, Safeguard), Ivermectin (Ivomec) and Doramectin (Dectomax)
 - Lowest level of resistance
 - Levamisole (Levisol, Tramisol)
 - Not available anymore
 - Becoming widespread rapidly
 - Moxidectin (Cydectin)
 - Teladorsagia/Trichostrongylus
 - Drenchrite *Trichostrongylus*, but small percentage of population
 - No documentation for *Teladorsagia*

"Smart Drenching"

- Use Proper Dose and Drenching Technique
 - Ensure proper dose is delivered over back of tongue
 - Critical that the full dose lodges in the rumen
 - If drench is delivered to the mouth rather than over the back of the tongue
 - Can stimulate closure of the esophageal groove with much of the drench bypassing the rumen
 - Faster drug absorption
 - Shorter duration
 - Efficacy is reduced

"Smart Drenching"

- Administer all drugs orally
 - Pour-ons are absorbed poorly
 - Injectable moxidectin (long withdrawal time)
- Combinations
 - Different classes (together/sequentially)
- Restrict feed intake for 24 hours prior to treatment
 - Once in the rumen, the duration of drug availability is largely dependent on the flow-rate of the digesta
 - Decreasing digesta transit leads to an increase in drug availability and efficacy

Do Not Buy Resistant Worms

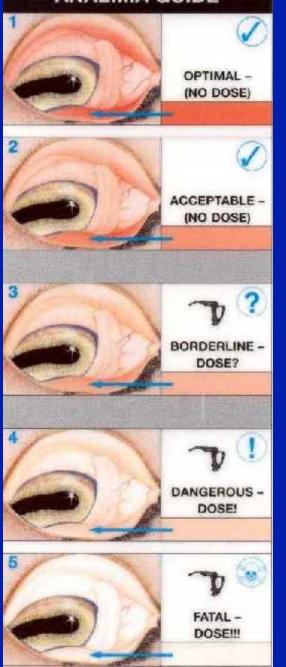
- All new additions should be quarantined and aggressively dewormed upon arrival
 - Deworm with at least 2 anthelmintics with different mechanisms of action (different class)
 - Moxidectin and albendazole, for example
 - Should remain in quarantine for 10 14 days
 - Perform FEC to confirm minimal or no eggs are shed
 - If quarantine is not possible:
 - Treat with at least 2 anthelmintics and confine to pens for a minimum of 48 hours following treatment

Selective Treatment

Concept Behind Selective Treatment

- Worms are not equally distributed in groups of animals
 - –20-30 % of animals harbor most of worms
 - responsible for most of egg output and thus pasture contamination

Impact of Selective Treatment on Refugia


- The more of the population that is in refugia, the slower the rate with which resistance develops
- Selective treatment significantly increases the percent of the population in refugia

How Do We Achieve Selective Treatment

- The FAMACHA[©] system

 Technique for the assessment of Haemonchus contortus infection
 - Indirectly evaluate worm burden by level of anemia

FAMACHA ANAEMIA GUIDE

The FAMACHA[©] System

- Eye color chart with five color categories
- Compare chart with color of mucous membranes of sheep or goat
- Classification into one of five color categories:
 - 1 not anemic
 - 5 -- severely anemic

- Examine in sunlight
- Open as shown for a short time only
- Look at color inside lower eyelid
 - Match to color on card

Keep records

FAMACHA ANEMIA RECORD

Group ID:_ Totals 1 2 3 4 5 2 3 4 5 Category 1 15 27 12 1 Date: 51 0 Treatment: 1 2 3 4 5 5 22 20 8 0 Date: 5 15 Treatment: 1 2 3 4 5 0 18 25 11 1 Date: 6 Treatment: 1 2 3 4 5 Date: Treatment: 1 2 3 4 5 Date: Treatment:

Counted

Counted and Treated

× Bottle Jaw - Treated

Ray M. Kaplan, DVM, PhD

Integrating the FAMACHA[©] System

- Start examining at two week intervals in the spring
 Treat categories 4 and 5
- Go to one week intervals as necessary during Haemonchus "season"
- In cooler times of year every 4 to 6 weeks may be sufficient
- If >10% of flock/herd in categories 4 and 5, consider treating 3s as well
- Examine especially animals which lag behind the flock/herd
- Check for animals with "bottle jaw" and treat these, regardless of whether they look anemic or not

Selective Treatment Teladorsagia/Trichostrongylus

• FEC

- Vet or do your own
- Make sure it is quantitative technique
- Body condition score
- Dag (dirty butt) score
 Diarrhea
- Reduced weight gain
- Weight loss
- Bottle jaw

Alternative Methods for Worm Control

Breeding for Resistance

- Select resistant individuals (FEC/PCV/ FAMACHA) and cull susceptible animals
- Use resistant breeds for crossbreeding (Commercial)
 - -Sire effect
- Long term process, but will be rewarding

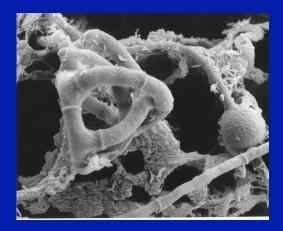
Copper-oxide Wire Particles

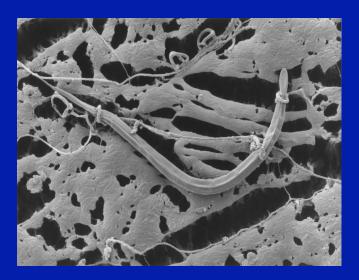
- Haemonchus only
- Marketed for copper deficiency
 - Copasure and Santa Cruz Animal Health
- Potentially toxic in sheep
- Selective treatment for individuals

 FAMACHA
- Copper sulfate added to feed does not work
 May work better as a drench

Condensed Tannin Plants

- Sericea lespedeza
 - Forage that grows relatively well in SE US
 - Establishment as pasture may fit some operations
 - Hay or pellets may be suited for many other operations
 - Has effect on *Haemonchus* and coccidia





Worm-trapping Fungi

- Duddingtonia flagrans

 Affects all worm larvae in feces
 - Feed daily with supplement
 - Primary objective is to clean up pasture
 - Long term results
 - Maybe 2-3 years
 - US registration (??)

Integrated Strategy

- Use FEC, FAMACHA, etc. for monitoring infection level
 - Cull high infection individuals resistance selection
 - Deworm individuals as necessary
 - Effective drug smart drenching
 - Copper oxide wire particles
 - Sericea lespedeza
- Management
 - Stocking rate, mixed species grazing, dry lot, pasture spelling, etc.
- Weather conditions
 - Warm/wet = increased worm problems
 - Cold/dry = decreased worm problems
- Future (??)
 - Worm-trapping fungus

American Consortium for Small Ruminant Parasite Control

ACSRPC.org

Questions ???

