Strategies to Minimize Resistant Internal Parasites on your Farm

J.E. Miller
Louisiana State University
American Consortium for Small Ruminant Parasite Control
Background To The Problem

- Gastrointestinal worms are major pathogens of small ruminants
- Worm control has relied almost exclusively on the frequent use of anthelmintics (dewormers)
- Dewormer resistance is now common
 - A fresh approach to control is needed
- American Consortium for Small Ruminant Parasite Control Group Formed (2001)
Gastrointestinal Worms of Small Ruminants

Abomasum:
- *Haemonchus contortus* (southeast US)
- Teladorsagia circumcincta
- *Trichostrongylus axei*

Small intestine:
- *Trichostrongylus colubriformis*
- Cooperia
- Nematodirus

Large intestine:
- *Oesophagostomum*
- *Trichuris*
Haemonchus contortus
(Barber Pole Worm)

- **Blood-sucking worm**
 - Highly pathogenic
 - Hypoproteinemia - “bottle jaw”
 - Anemia → Death

- **Most important worm parasite** in small ruminants raised in warm/wet environments
 - Southeastern US year round
 - Seasonal summer – rest of US
Life Cycle of *H. contortus*

- Adult nematodes in the digestive tract of sheep lay their eggs.
- Eggs passed onto pasture in manure.
- Infective larvae are ingested by grazing sheep.
- Eggs hatch, and larvae develop to infective 3rd stage in soil and manure.

http://www.ext.vt.edu/pubs/sheep/410-027/
Why is *H. contortus* such a problem?

- **Long transmission season** - southeastern US
- **Very fecund** - 5-10,000 eggs per day
- **Short life cycle**
 - 4-5 weeks
- **Immunity wanes** – ewes parturition/lactation
- **Spring** = pasture contamination
- **Immunity is slow to develop** – lambs
 - 4-6 months of age
Teladorsagia/Trichostrongylus (Bankrupt Worms)

- Abomasum/Small intestine
- Thrives in cool/wet climates
- Short transmission season – Summer, most of US
- Destroys mucosal cells and disrupts function
- Anorexia, diarrhea, reduced weight gain or weight loss
 - Decreased production not necessarily death = “bankrupt”
- Immunity wanes – ewes parturition/lactation
 - Spring = pasture contamination
- Immunity is slow to develop – lambs
 - 4-6 months of age
Background to the Problem

- Age of modern anthelmintics
- Parasitologists recommended strategies that maximized benefits of treatment
 - Ignored resistance issues
- Over-reliance on anthelmintics
 - Therapeutic vs. prophylactic
 - Loss of common sense management-based approaches
Anthelmintic Resistance

- The ability of worms to survive treatments that are generally effective at the recommended dose rate
- Treatment eliminates worms whose genotype renders them susceptible
 - Worms that are resistant survive and pass on their “resistant” genes
- Resistant worms accumulate and finally treatment failure occurs
 - Natural biological consequence of drug treatment
Selection for Drug Resistance
Where Did We Go Wrong
What Actually Causes Resistance

- Treatment at frequent intervals
 - Many farms > 6 Tx per year
- Treating all animals at same time
 - No refugia
 - The proportion of the population that is not selected by drug treatment
 - Provides a pool of susceptible genes
 - Dilutes resistant genes in that population
 - Overlooked as the most important component of drug resistance selection
- Treating and moving to clean pasture
 - No dilution/refugia
- Under dosing
 - Worms with low-level resistance survive
When to Suspect Resistance

• When FEC remain high or clinical signs persist following treatment
 – One must also rule out other possibilities
 • An inadequate dose of drug was administered
 – Underestimated weight
 – Drug was spilled/spit-out
 • Activity of the drug is reduced
 – Beyond its expiration date
 – Stored improperly
Diagnosis of Resistance

- **Laboratory – DrenchRite**
 - Dr. Ray Kaplan’s lab (UGA) - $450
 - Only one test needed per farm
 - One pooled fecal sample from 10 animals
 - All 3 major drug classes tested in assay

- **Veterinarian in the field -- simple on-farm anthelmintic trial**
 - Fecal egg count reduction test
 - FEC at treatment and again 7-10 days later
McMaster Fecal Egg Count

- Quick, easy to perform
- Should be part of routine services offered
- Slides available from:
 - Chalex Corp.
 5004 – 228th Ave. SE
 Issaquah, WA 98029
 425-391-1169
 FAX 391-6669
What Does All This Mean For The Small Ruminant Industry

- Anthelmintics can no longer be thought of as a management tool to be relied on to improve animal productivity
- **Reality** = effective long-term control of worms (specifically *Haemonchus*) will only be possible if anthelmintics are used intelligently with prevention of resistance as a goal
Anthelmintics

- **Benzimidazoles**
 - Albendazole (Valbazen)
 - Fenbendazole (Safeguard, Panacur)
 - Oxfendazole (Synanthic)

- **Imidazothiazoles**
 - Tramisol, Levasol, Rumatel

- **Macrocyclic Lactones**
 - Ivermectin (Ivomec)
 - Doramectin (Dectomax)
 - Moxidectin (Cydectin)
 - Eprinomectin (Eprinex)

- **2 new classes coming (??)**
 - Amino Acetonitrile Derivatives (AAD) - Monepantel (Zolvix)
 - Spiroindole - Derquantel (Startect)
Prevalence of Resistance

- **H. contortus**
 - Common
 - Benzimidazoles (Valbazen, Panacur, Safeguard), Ivermectin (Ivomec) and Doramectin (Dectomax)
 - Lowest level of resistance
 - Levamisole (Levisol, Tramisol)
 - Not available anymore
 - Becoming widespread rapidly
 - Moxidectin (Cydectin)

- **Teladorsagia/Trichostrongylus**
 - Drenchrite – *Trichostrongylus*, but small percentage of population
 - No documentation for *Teladorsagia*
“Smart Drenching”

• Use Proper Dose and Drenching Technique
 – Ensure proper dose is delivered over back of tongue
 – Critical that the full dose lodges in the rumen
 – If drench is delivered to the mouth rather than over the back of the tongue
 • Can stimulate closure of the esophageal groove with much of the drench bypassing the rumen
 – Faster drug absorption
 – Shorter duration
 – Efficacy is reduced
“Smart Drenching”

- Administer all drugs orally
 - Pour-ons are absorbed poorly
 - Injectable moxidectin (long withdrawal time)
- Combinations
 - Different classes (together/sequentially)
- Restrict feed intake for 24 hours prior to treatment
 - Once in the rumen, the duration of drug availability is largely dependent on the flow-rate of the digesta
 - Decreasing digesta transit leads to an increase in drug availability and efficacy
Do Not Buy Resistant Worms

• All new additions should be **quarantined and aggressively dewormed** upon arrival
 – Deworm with at least 2 anthelmintics with different mechanisms of action (different class)
 • Moxidectin and albendazole, for example
 – Should remain in **quarantine for 10 - 14 days**
 • Perform FEC to confirm minimal or no eggs are shed
 – If quarantine is not possible:
 • Treat with at least 2 anthelmintics and confine to pens for a minimum of 48 hours following treatment
Selective Treatment
Concept Behind Selective Treatment

- Worms are not equally distributed in groups of animals
 - 20-30% of animals harbor most of the worms
- Responsible for most of egg output and thus pasture contamination
Impact of Selective Treatment on Refugia

- The more of the population that is in refugia, the slower the rate with which resistance develops.
- Selective treatment significantly increases the percent of the population in refugia.
How Do We Achieve Selective Treatment

• The FAMACHA© system
 – Technique for the assessment of *Haemonchus contortus* infection
 • Indirectly evaluate worm burden by level of anemia
The FAMACHA© System

- Eye color chart with **five color categories**
- Compare chart with color of mucous membranes of sheep or goat
- Classification into one of five color categories:
 - 1 – not anemic
 - 5 -- severely anemic
• Examine in sunlight
• Open as shown - for a short time only
• Look at color inside lower eyelid
 • Match to color on card
Keep records

FAMACHA ANEMIA RECORD

<table>
<thead>
<tr>
<th>Category</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 5/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date: 5/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date: 6/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Counted
- Counted and Treated
- Bottle Jaw - Treated

Ray M. Kaplan, DVM, PhD
FAMACHA Anemia Record
5/30/03
Integrating the FAMACHA© System

- **Start examining at two week intervals** in the spring
 - Treat categories 4 and 5
- **Go to one week intervals as necessary during** *Haemonchus* “season”
- In cooler times of year every 4 to 6 weeks may be sufficient
- If >10% of flock/herd in categories 4 and 5, consider treating 3s as well
- Examine especially animals which lag behind the flock/herd
- Check for animals with “bottle jaw” and treat these, regardless of whether they look anemic or not
Selective Treatment
Teladorsagia/Trichostrongylus

- FEC
 - Vet or do your own
 - Make sure it is quantitative technique
- Body condition score
- Dag (dirty butt) score
 - Diarrhea
- Reduced weight gain
- Weight loss
- Bottle jaw
Alternative Methods for Worm Control
Breeding for Resistance

- Select resistant individuals (FEC/PCV/FAMACHA) and cull susceptible animals
- Use resistant breeds for crossbreeding (Commercial)
 - Sire effect
- Long term process, but will be rewarding
Copper-oxide Wire Particles

- *Haemonchus* only
- Marketed for copper deficiency
 - Copasure and Santa Cruz Animal Health
- Potentially toxic in sheep
- Selective treatment for individuals
 - FAMACHA
- Copper sulfate added to feed does not work
 - May work better as a drench
Condensed Tannin Plants

- **Sericea lespedeza**
 - **Forage** that grows relatively well in SE US
 - Establishment as pasture may fit some operations
 - **Hay or pellets** may be suited for many other operations
 - Has effect on *Haemonchus* and coccidia
Worm-trapping Fungi

- *Duddingtonia flagrans*
 - Affects all worm larvae in feces
 - Feed daily with supplement
 - Primary objective is to clean up pasture
 - Long term results
 - Maybe 2-3 years
 - US registration (?)
Integrated Strategy

• Use **FEC, FAMACHA, etc.** for monitoring infection level
 – **Cull** high infection individuals – resistance selection
 – **Deworm individuals** as necessary
 • Effective drug – smart drenching
 • Copper oxide wire particles
 • **Sericea lespedeza**

• **Management**
 – Stocking rate, mixed species grazing, dry lot, pasture spelling, etc.

• **Weather conditions**
 – Warm/wet = increased worm problems
 – Cold/dry = decreased worm problems

• **Future (??)**
 – **Worm-trapping fungus**
American Consortium for Small Ruminant Parasite Control

ACSRPC.org
Questions ???

- bottle jaw

Images of sheep and a person examining a sheep's eye and feet.